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Ab*ad-Invariant integrals are derived for coupled time dependent thermoviscoelastic solids with
spatially varyina moduli. These integrals are used to obtain crack tip stress and displacement fields for
certain special strip problems where constant temperatures and displacements are applied to the strip sides.
The steady thermoelastic equations can be viewed as a limit of the time dependent coupled equations and
hence the above formulations can be used to obtain results. However, no direct formulation with the desired
properties seems possible for the steady equations. Hence, to obtain results for steady thermoelastic problems
we derive avariational principle and invariant integrals for a"pseudo" setof thermoelasticequations which can
be shown to reduce to the well known equations in an appropriate limit. Applications of these new integrals are
discussed.

I. INTRODUCTION

Recently, Wilson and Yu[1] and Gurtin[2] have considered path independent integrals for static
linear isotropic thermoelasticity. In [1] the integral is not strictly path independent since the
expressions used involve a nonvanishing volume integral (surface integral for two dimensional
applications). The integral in [2] suffers from the disadvantage that the integrand is not zero
along the crack faces. It is stressed in Atkinson[3] that this last point is worth checking since
when the integrand is not zero on the crack faces, the end points of a contour enclosing the
crack tip cannot be slid along the crack without changing the value of the integral.

To overcome the difficulties present in the above formulations we derive here alternative
invariant integrals. Moreover our integrals are valid for coupled time dependent thermo
viscoelastic solids, and in addition in favorable situations the integrands will be zero on the
crack face. It turns out that these integrals, while suitably invariant for the coupled theor.y, are
not invariant for the uncoupled theory. Nevertheless, it should be possible to perform certain
calculations using the full coupled invariant integral and then obtain results for time in
dependent, uncoupled theories by a limiting process. Some consideration of this is given later.
To obtain these invariant integrals for the coupled time dependent thermoviscoelastic theory we
first Laplace transform the coupled equations of motion and then construct a Lagrangian which
produces the transformed equations as its Euler-Lagrange equations. Once this Lagrangian (L)
is constructed it is straightforward to construct invariant integrals in terms of a tensor

(1.1)

where iii are the Laplace transformed displacement components and 0 is the Laplace trans
formed temperature. To do this we follow a prescription outlined by Eshelby[4]. It should be
noted that in [4] the argument is phrased in terms of the Energy-momentum tensor whereas no
such physical description is applicable to the tensor p/j defined in eqn OJ) since this is defined
in the Laplace transformed domain.

The tensor p/j defined in OJ) can be directly useful as a stress-analysis tool in certain
special situations. To illustrate this we consider in Section 3 the problem of a semi-infinite crack
in an infinite strip with spatially independent boundary conditions on the strip sides. For such
boundary conditions it is possible by means of a path independent integral to determine the
singular field of the crack tip from calculations made as XI tends to plus or minus infinity in the
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strip. Calculations of this kind have been made by Nilsson [5] for a homogeneous viscoelastic
strip and by Atkinson[6] for inhomogeneous strips, i.e. strips in which the moduli may vary
spatially in a direction perpendicular to the crack direction. Each of these applications is to
situations where the crack is stationary in a time dependent stress field. Situations involving
steadily moving cracks in displacement loaded inhomogeneous strips have been considered by
Atkinson [7] and this and other applications are discussed in [8]. Since in these applications the
moduli vary with position in a direction perpendicular to the crack direction the calculations of
[6,7] include the case of a crack lying at the interface between two dissimilar media. Adiscussion
of such an interface crack in the stationary bimaterialelastic case has been discussed
independently by Smelser and Gurtin[9] although explicit calculations were not considered.

The calculations of Section 3 are set up to deal with the general coupled case with a variety
of spatially independent boundary conditions on the strip sides. However, in certain situations
it is not possible to extract explicit information about stress intensity factors even in principle.
For example if the temperature boundary conditions are such that singular thermal gradients
are anticipated at the crack· tip then the integral considered in Section 3will only give a linear
combination of the squares of a stress intensity factor and the thermal intensity factor
(coefficient of thermal gradient times ,1/2 ahead of the crack tip). This is reminiscent of what
happens in the bimaterial elastic case. For other boundary conditions however, explicit
determination of intensity factors should be possible even in the coupled case. The algebra
involved is quite complicated and so various simplified cases are considered in Section 3. The
results are given in terms of the Laplace transform variable so further work is required to give real
time results. Certain limiting large time results can be obtained relatively easily and are discussed in
Section 5.

We have noted at the beginning of this introduction that invariant integral formulations for
static linear thermoelasticity are either not suitably invariant or are not zero on the crack faces,
and hence cannot be used for the applications envisaged here. The full coupled theoryoutlined
in Section 2 and 3 should however be applicable to static situations as the limit t~ 'Xi (or p ~O)
of a transient situation. Although this is correct it is perhaps more complicated thanneccessary
if only a static analysis is required. As a simple alternative we derive in Section 4 a variational
principle for a set of "pseudo" static thermoelastic equations which reduce to the osual oneswhen
a certain coefficient tends to infinity. Calculations of the kind discussed in Section 3 can then be
made directly in real time for steady thermoelastic situations.

Finally in Section 5 some generalizations are discussed and a comparison made of the
results of Sections 3 and 4. It should be noted that the invariant integral approach used here
leads to a determination of the square of the intensity factors (in favorable cases). The sign of
the intensity factor must be determined by other considerations, e.g. symmetry. Furthermore
since the stress intensity factor is a local quantity at the crack tip, this only determines the
opening ofthe crack near the tip. To determine in critical cases the opening of the full extent of
the crack a full analysis is required.

2. INVARIANT INTEGRALS FOR COUPLED, TIME DEPENDENT.
THERMOELASTICITY AND THERMOVISCOELASTICITY

For brevity we begin with the equations of the linear theory of coupled thermoviscoelasti
city as given for example in Christensen[lO]. The corresponding equations for the coupled
thermoelastic case can be easily seen as a limiting case. Without body forces the relevant
equations can be written

and

I
E·· = - (u +U" )II 2 1.1 1.

'

(the commas denoting partial differentiation)

(2.1 )

(2.2)

(2.3)
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with

The deviatoric components Sq and eq are defined as

535

(2.4)

111=0. (2.5)

The summation convention is applied to repeated indices and i, j and k take the values 1,2
or 3.

The heat conduction equation is given by

(2.6)

or

(2.7)

In the above equations kq, or k. met) and .ij(l)or .(1) are mecbanicalproperties of the material.
SinUlarly the functions Gl(I). GEId(I) are the relaxation moduli. The reader is referred to (10) for
more details of this formulation. 8('1') denotes the irifinitesimal temperature deviation from the
base temperature To.

Suppose now initial conditions are considered in which

8(t) == Uj(l) =O'jj(t) =0 for t < O.

Then Laplace transforming eqns (2.1)-(2.8) gives the equations

- 2-O'iiJ = PP Uj

_ 1(_ _)
Elj =2: UI,j +Uj,i

or

and for tbe temperature

or

SS VClI. 'I. No. '-"

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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(2.15)

has been used for the Laplace transform. Note that if the viscoelastic moduli pGi1kl• etc. are
replaced by constants independent of p and similarily P~ij are replaced by material constants
independent of p then the above equations reduce to the time transformed thermoelastic
equations.

It is convenient for our subsequent formulation to define a tensor ~j as

(2.16)

or

Then (2.11) and (2.12) can be written

iiij =0 ~j - p([,ijB (anisotropic)

iiij == ~j - P~B8ij (isotropic).

(2.17)

(2.18)

Our procedure for finding invariant integrals will be to first find a Lagrangian for the>above
system of equations and then to apply systematically a procedure outlined in HI for generating
invariant integrals via the energy momentum tensor. The arguments outlined in [4] have in mind
applications to situations where the invariant integrals have physical significance such as the
force on a defect. However. it is possible to apply the procedure even when the restllting
integrals may not themselves have any physical significance but may nevertheless serve as
(weakly) useful tools in stress analysis.

One possible Lagrangian for the anisotropic eqns (2.9)-(2.11) and (2.13) can be written

1 - _ p2 _ _ - -_ 1 - - I _-2

L == - 2 tij€ij - P2" UiUi +Pc/JlJUi,j +2Top kilJ,iO,j +2pmO (2.20)

where ~j is defined in (2.16).
To check this recall that if (2.9)-(2.11) and (2.13) are to be generated by a variational

principal of the form, f L dV stationary, then they must result from the Euler-Lagrange
equations:

and

.i- ( a~ ) _a~ == 0 i == 1, 2, 3
aXj aUi.j au;

(the summation convention applying to the index j)

(2.21)

(2.22).i- (aL) _ aL::::: 0
aXj a8.j aB .

Note that in the above derivation the dependence L( iii.j, iii, 8.1> 8. Xj) is considered and the
symmetries 4j = ~;, ~ij =~ji' kq= kji are assumed. Furlhermore,eqnsJ2.9):(2.l 1) and (2.13) will
stillfoUow from (2.20), (2.21) and (2.22) even if the coefficients Oijkl, 4>ij, Iii and kij depend
explicitly on the Xj (i.e. spatially inhomogeneous media). In this last case the l.h.s. of eqn (2;6)
and subsequent equations would be replaced by (kijO,i ),j'
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If we now define the tensor

then it can be shown in an elementary manner (see [4,6]) that

(iJL)~ ---
'jJ - ax, explicit•

S37

(2.23)

(2.24)

The subscript explicit indicates that the partial differentiation is with respect to the terms in x,
which appear explicitly in the Lagrangian. From (2.23) and (2.20) we deduce that

- -- - k· --
P'j =- (/,j - p8qJ,j) uiJ +i:P 8"8,, - L~lj

hence
k --

P'j =- u,iii,' +~ 8"8,, - U'j'
lOP

Given P,j it is possible to derive invariant integrals as, for example,

(2.25)

(2.26)

(2.27)

where dSj = nj ds, n, being the outward normal to the surface element dS. Taking S as a closed
surface in the body which does not enclose any singularities a straightforward application of the
divergence theorem leads to

and this equals zero from (2.24) provided L does not depend explicitly on x,.
For the isotropic problem designated by eqns (2.9), (2.10), (2.12) and (2.14) we can write

=_! --. _I!li:. -.- --- _k_ - - e.-~L 2 I~jj 2 U,U, +p4J8uj., +2ToP 8"8,, +2 m8

or

l-ei:. - k -- -
L = - 21,I,j - 2 iitii, - p4J9"iij +2ToP 8"8,, +~ ",82 (2.28)

provided i does not depend explicitly on spatial coordinates (x,). In this case either of (2.27) or
(2.28) leads to the field equations (2.9), (2.10), (2.12) and (2.14). The difference between (2.28)
and (2.27) is the divergence (iii, ),/0 When i does depend on the x,. expression (2.27) is the
correct I...aaranaian to use.

Defining P'j as in (2.23) gives from (2.27) the formula

(2.29)

or if (2.28) is used P'j is given as

(2.30)

We stress that in (2.29), L is defined by (2.27) whereas in (2.30) L is defined by (2.28).
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3. APPLICATIONS OF SECTION 2

3.1 The coupled thermoviscoelastic strip
In the following sections, we will consider the plane strain problem of determining the stress

intensity factors for a semiinfinite crack in a finite width strip, Fig. 1. From eqn (2.26), the
invariant integral

(3.1)

is zero around any closed path which does not contain a singularity. One such path, ABCDEFG
is shown in the figure. For the present purposes, it is sufficient to consider

(3.2)

where P'i is given by eqn (2.29) or (2.30) for an isotropic material. Along the segments Be and
GA n = ±e2, and

(3.3)

since iii and jj are independent of XI on the strip sides.
Similarly, along the crack faces, EF and DE, n = ±e2 and from eqns (2.29) and (2.30)

PI2 =- ai2 iii.1 (3.4)

or

P I2 =- i;2 iii,1 (3.5)

provided 8does not depend on XI on the crack faces. Now for a stress free crack, eqn (3.4) is
identically zero. However, eqn (3.5) is seen to be zero only when 8 is also zero along the crack
face. This restriction must be born in mind when attempting to apply the invariant integral based
on eqn (2.30). For this reason, we will use the tensor p/j given byeqn (2.29) in the remainder of
this discussion.

The results of eqns (3.3) and (3.4) reduce eqn (3.2) to

1. P lj dSj = f PIj dSj + { p\j dSj + { PIj dSjr AB JeD JFO
crack

lip

(3.6)

where the integral around the crack tip is evaluated on a counter clockwise contour. The result
given in eqn (3.6) is particularly useful since the integrals on the r.h.s. may be evaluated for
Ixd -+00. In this limit, the governing eqns (2.9), (2.10), (2.12) and (2.14) are taken to be
independent of XI and reduce to a set of coupled ordinary differential equations.

C

~~C~~=~~EL...xX~1 IA ~

Fig. 1. Integration contour used to determine the stress intensity factor for a semiinfinite crack in a finite
width thermoviscoelastic strip.
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As IXII-+oo, the equilibrium equation (2.9), reduces to

- 2-0'21.2 =pp Uj

with the strain displacement equation given by

_ 1(_+_)
En =2 Uu "2J

and the temperature field determined from

.!. - _ 2 - - 2 --To 8m - P m8 +p ~22'

The constitutive eqn (2.12) yields

The first equilibrium equation with (3.11) and (3.9) gives

539

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

with the boundary condition iii =0 on X2 =± h as IXII-+oo. The solution of (3.12) yields iiI =O.
The remaining equilibrium equation yields

(3.13)

where ,2 =(d/dx2)' Equations (3.10) and (3.13) form a system of coupled ordinary diferemial
eouations for the teDl1'Craturefield and the displacement at IXII-+ oo•

The governing equations may be rewritten as

where

(3.14)

(3.15)

and -§." = Ie •

The resulting characteristic equation obtained by substituting (3.15) into (3.14) is

paD" - (p3aO+pp2+p1tifi)JYl+p4pa =O.

The roots of (3.16) are found to be

fJi2 =p(P2&O +fJP +p2ij)± PV«P2~O+pP +p2jj)2 .... 4p3aOp)
2pG

and the displacement and temperature fields are

(3.16)

(3.17)
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where A" A2, B" and B2 are determined by the boundary conditions at plus and minus infinity.
Equations (118) do not present particular problems in the evaluation of (3.6). However, the

subsequent algebra is quite lengthy and will not be presented. In addition, the coupling of the
displacement and temperature fields does not allow the stress intensity and thermal intensity
(coefficient of singular thermal gradient at crack tip) to be separated in situations where this
thermal intensity is non-zero. Thus, in the following section, we will examine the behavior at
the crack tip for an uncoupled problem.

12 The uncoupled thermoviscoelastic strip
Equations (114) and (3.15) may be uncoupled by letting k~ 00 while requiring ii to remain

finite. This limit is also obtained for all time if the material is incompressible, i.e. €kk = O. The
characteristic equation (3.16) is then seen to have roots given by

131 2
:::: pii

2

13l :::: P.:.g..
pO

(3.19)

(3.20)

We note that 131 and 132 are the Laplace transform analogs of the thermal and mechanical wave
speeds. Equation (3.l8b) reduces to

- 13J2pG - pp2 .
8 :::: - (AI cosh 13lx2 +B1 smh 13,x2)

13IP4J

while (3.18a) remains unchanged.
We now consider the boundary conditions as XI ~oo. As shown in Fig. I, the strip is

considered to have the same time varying temperature field applied at X2 ± h while the edges are
displaced by equal and opposite amounts. Thus as XI ~OO, we require

0:::: 8og(p)

ii2 :::: ± uof(p) at X2:::: ± h.

Applying (3.21) to (120) and (1 18a) gives the temperature and displacement fields, XI ~ 00

where

c:::: _ pj,fJI8~(P)
pG(13,2 - fJl) cosh 13lh

(3.21)

(3.22)

As Xl ~ - 00, the boundary conditions (3.21) still obtain at X2= ± h. However, we must
introduce additional conditions along the crack face X2 :::: O. Along this line, we will assume the
crack is stress free and insulated. These conditions conespond to

0'22(0) :::: pGii2.iO) - pj,O(O) :::: 0

8,2(0):::: O.

(3.23)
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Equations (3.20) and (3.1Sa) then yield as XI-+- oo

- )COsh/l'X2
(J(X2) = (JoH(P cosh (3.h

iMx2) =-~ C sinh {32X2 ± (uJ(P)+~ Csinh {32h

C . h h)COShf32X2 C' h Q h- sm {3, cosh (32h + sm,."

S41

(3.24)

where C is as in (3.22) and ± applies depending on whether X2> 0 or X2 <O.
We note that the temperature fields at ± 00 are identical. Indeed, for the insulated crack with

symmetrically applied temperatures at ± h the temperature field is independent of XI and hence
is nonsingular. In addition, the boundary displacements wiD give rise to only a ~ode I opening
at the crack tip. Thus, we can explicitly determine the stress intensity factor Kr(P) from eqn
(3.6). Substituting eqns (3.22) and (3.24) into (3.6) gives after some algebra

f PIj dSj =si~1~~;h [uof(P) - (~)({3. sinh {3.h -{32 sinh (32h)r (3.25)
crack

lip

The stresses and displacements near the crack tip are taken to be of the form

(3.26)

(3.27)

where the functions lij and Hi have the same angular form as those of the well known elastic
case (see Williams [1lJ). Note that the angle 9 used here is not to be confused with the
temperature. The integral around the crack tip can be shown to be

(3.28)

Combining (3.25) and (3.28) yields

(3.29)

for the Laplace transform of the stress intensity factor.
Note that the above result has been derived using the full coupled variational principle and

invariant integral (2.27). However, because of the special nature of the boundary condition
(3.21), a simple alternative treatment is possible wbich affords a check on the above result. First
the stress distribution in the strip in the absence of the crack is analyzed subject to the specified
thermal boundary conditions and in addition the condmons thatu22 and "2 are zero on X2 = 0for
all XI' This stress and thermal distribution (which depenes only on X2) can thus be subtracted (by
superposition) from the original crack problem witJaout violating the boundary conditions on the
crack line X2 =O. This will induce in general a non-zero displacement "2 on the strip sides. To
account for tbis, one need only solve a viscoelastic (elastic) problem subject to this displace
ment boundary condition. Such problems of layered media, etc. have been considered by
Atkinson [6, 7].
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3.3 Singular temperature gradients
In the preceeding section, it was possible to calculate the Kr(p) explicitly since the

temperature gradient at the crack tip was nonsingular. This generally will not be the case.
However, when the field equations are uncoupled, it is still possible to compute the magnitudes
of the stress singularities by subtracting out the terms associated with the singular temperature
gradient. In the following, we consider the problem of determining the thermal intensity factor
in a layered composite, Fig. 2. The corresponding elastic problem has been treated by
Atkinson [6, 8].

The parts of PI in eqns (2.26), (2.27) and (2.29) associated with the thermal field are

(3.30)

Using arguments similar to those in Section 3.2 and [5,71 and assuming continuity of ftuxand
temperature at the interface, a result identical to eqn (3.6) is obtained

Flthl = Fllxl_oc+Fllx,_-x
crack

tip

(3.31)

and we need only find the solutions as Ixd~ 00.

The assumption that the XI dependence in the field equations vanishes as Ixd~oogives a pair
of governing equations

for the temperature field. Here iii = (mjTol k;). The solution of eqn (3.32) is

9(i) =Aj sinh !3jX2 +Bj cosh !3jX2 i = 1, 2

where !3j =\f(p2iij ). The constants are determined from the boundary conditions

0(1)(±h 1 ±h2)=±8o!(p) IXll~oo

dO(2) -
dn = 8,~2)(0) =0 XI ~ - 00

and as assumed earlier, the required continuity of flux and temperature at the interface

O(I)( ± h2) = 0(2)( ± h2 )

kIOS)( ± h2) = k20,~2)( ± h).

(3.32)

(3.33)

(3.34)

(3.35)

The evaluation of the constants using eqns (3.34) and (3.35) is tedious but straightforward.
Having determined the A/s and B/s, eqn (3.33) may be used to evaluate the r.h.s. of (3.31).
After some algebra, the result is found to be

Fig. 2. Finite width, layered thermoviscoelastic strip containing a semi-infinite crack.
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A:Z(Fllx,_+Pllx,--) =- fi:, 902fCP) sinh 2~1i2[oosb:Zlftbl - A2 tiiih21flbll

- ~~ 902f(p)A:Z sinh (;Jlbl[cosh (;Jlblcosh 2(;J2b:z

+Asinh (;Jlbl sinh 2(;J:zh:zJ

where

and

S43

(3.36)

We note that this result coincides with that of Atkinson[7,8J for a crack in a layered media
subjected to harmonic boundary displacements.

The evaluation of PI around the crack tip remains. We will take the near tip field to be of the
form

(3.38)

(3.39)

This field satisfies the zero flux condition on 8 = :t 1r and produces sinaular fluxes ahead of the
crack. Insertion of (3.38) into (3,JO) and evaluating as r-+O gives

_ - k2 [K'l(P)f
Pll

crack
- ToP 8 .

tip

Equations (3.36) and (3.39) give the Laplace transform of the thermal iDtenaity factor for a
proWem where the crack face is insulated. These results may be subtraded from an ·UIlCOUpled
thermoviscoolastic problem aIIowm, one to obtain the transformed stress iDtensity factors.
ReJations similar to (3.36) may also be produced for problems in which the temperature is
prescribed'" the track face provided it is not a function of XI'

4. VARIATIONAL PRINCIPLE AND INVARIANT INTEGRALS FOR A MODEL
SYSTEM OF EQUATIONS, AND THEIR APPLICATION TO STEADY STATE

THERMOELASTIC PROBLEMS
We consider here a model system which will be seen to apply to steady state ther

moelasticity in an appropriate limit. The approach is analogous to that of Section 2 although
somewhat simpler. Consider the LaaraDlian

where

and

1
ell =i(UiJ + uf,i)

til = GI/ItRl (anisotropic)

tlj =2/Uq +AEtt8i/(isotropic).

(4.1)

(4.2)
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The above Lagrangian depends on Uj, U~i' (J and (J.; and thus leads to the Euler equations

a (aL) a (aL) aL- -- =0 and -.. - --=0aXj aUi,j aXj aO,j a8 (4.3)

(the summation convention with respect to repeated indices is used in the above equations as in
earlier sections). In terms of tii> etc. these Euler equations can be written

and

(- tii +<pij8),j = 0 (anisotropic) (4.4)

(4.5)

In the isotropic case <Pij is replaced by <P08ir Following .theprocedUfe described earlier we
define

aL aL
p. j =-a., Ui,l +-ao, 0'1 - L81j

U~I 'I

(4.6)

and it can be easily shown that PIjj = 0 provided L does not depend explicitly on XI and the
Euler equations are satisfied.

The field equations (4.4) and (4.5) can be viewed as a "pseudo" set of coupled thermo-elastic
equations under time-independent conditions. Putting k =00 in eqn (4.5) gives the usual. steady
state equations of thermoelasticity. Moreover, the integral

(4.7)

with PIj defined in (4.6) above is path independent since P1jj =0 is consistent with the field
equations (4.4) and (4.6)whichshould tend to the usual(steady)therm<lelastic equations when
k-+oo. Note, that contributions to PI for the integrals taken along a contoursuch.assbown in
Fig. I will be zero along the crack faces for temperature boundary conditions such astbose
discussed in Section 3. Note also tbat it is straightforward to generalize the Lagrutian(4.l) to
deal with anisotropic thermal fields such as considered by Atkinson and Clements[12J, The last
term in (4.1) is simply replaced by ~kij8'i(J'j'

4.1 Applications, cracks in strips. (Isotropic)
(1) Insulated plane crack. Suppose the temperature boundary conditions are

8 = O. on X2 == ± h for all x.
(4.8)

ao-a := 0 on the crack X2 == 0, Xl < O.
X2

and in addition displacements are applied to the strip si':es, i.e.

The crack is, of course, stress free so

Ui2=Oon X2=0, x.<O i=I,2.

(4.9)

(4.10)
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The stress being defined as

O'ij = tij - t/J118 (anisotropic)

=tii - 1/108;j8 (isotropic).

545

(4.11)

With the above boundary conditions it is easily seen that PI2 is zero on the crack faces and on
the strip sides X2 = ± h. We now apply the prOcedures discussed in Section 3. We consider a
contour such as shown in Fig. I and evaluate the contributions to FI from the path taken
through the vertical strips AB and CD at XI -+00 or - 00 respectively. To do this we assume that
the boundary conditions are such that variations in field quantities in the XI direction are zero at
XI =± 00. With this assumption the field equations (4.4) and (4.5) become (in the isotropic case)

with

( - 122 +1/18h =0
k8.22 - I/1U2;2 =0 (4.12)

Solving the coupled eqn (4.12) and substituting into (4.1) gives using the path independence of
the integral, after some algebra, the result

(4.14)

(4.15)

The l.h.s. of this equation can be easily evaluated around a vanishing small circle at the crack tip
to give

t 2 (1- /I)
P,/dSj = K, -2-

cnclt p.
tip

where from symmetry the only singular terms at the crack tip are due to the usual ,-112

singularities in the crack tip stresses and

(4.16)

(4.18)

Letting k-+oo in eqn (4.14) gives using (4.15)

lim Ki _(1_-_p) ==(,i--:+~2p.;.;.<.) [ 1>g81h
k-- 2p. h (,i +2p.)

and hence

(
1- ~)1/2 =(,i +2}1:)1/2( _ 1>g8,h )

K, 2p. hi7i "20 (,i +2p.)

which ought to be the solution for the corresponding steady thermoelastic problem (i.e. with the
temperature equation 8J1 =0). The result (4.18) agrees with the result obtained in Section 3 as
the steady state limit p -+0 of the solution given there.

Note, that since we are interested in the steady thermoelastic situation one could proceed by
solving eqns (4.12) at XI-+ ± 00 in the limit k-+oo. Doing this for the situation where t/Jo and
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(,\ +21L) may vary with X2 (symmetrically about X2 == 0 for convenience) leads to the result

. (1 II) 1/2 _ [ rh tbo dX2 ]/[ rh
dX2 ]IIZ

tl~ K I -r;;: 0- Uzo - 01Jo (,\ +21L) Jo (,\ +21L) (4.19)

and the subscript 0 on (1- 1I)/2p.. is to indicate that these moduli are evaluated on XZ::::: O. It
should be emphasized that the full (isotropic) Lagrangian of eqn (4.1) bas beenusedin these
calculations, only the far field (XI ~ ± (0) calculations have been simplified with the assumption
k~oo to deduce eqns (4.19).

(2) Insulated crack disturbing a uniform temperature gradient. For this case the temperature
boundary conditions are

8 ::::: ± 81 on X2 ::::: ± h
(4.20)

J8-a = 0 on the crack X2 = 0, Xl < O.
Xz

Since the temperature field is an odd function of X2 the only non-zero stress. induced on the
plane X2 ::: 0 in the absence of the crack will be a shear stress.

The boundary conditions are

U2 == 0 = UI on X2 = ± h for all XI'

and since the crack is stress free

0";2=0 on X2==O, x,<O.

For the coupled case a similar calculation to that shown in Example I gives

(4.21)

(4.22)

(4.23)f - 2tbo(k('\ +2p..»1/281
2

PI .ds· - - ---'-"-'''--''--'----;-.:::J:--'7-,.;:.+-....,-
crack J J ( 2 . h ( 2tboh )

tip A+ p..)sm (k('\+2p..»112

==_01k+~ p§h8~ +O(I/k) k
h 3(,\ +21L) as ~OO.

Note that as k~oo in eqn (4.5) this equation reduces to the usual steady state heat equation, Le.
8.ii == O. The solution of this equation subject to the boundary conditions (4.20) can be found by
the methods of Section 3 (compare Section 3.3 as p tends to zero). Thus tbe thermaHntensity
factor can be found separately in this limit, its use in evaluating the Lh.s.of(4.23) leads to the
term -O/kIh. The stress-intensity factor in the limit k~ 00 can then be deduced from the second
term in (4.23h and leads to the result

(4.24)

for the shear stress intensity factor induced by the thermal field in the steady thermoelastic
limit.

5. CONCLUDING REMARKS
Invariant integrals have been derived (Section 2) and are valid for time-dependent coupled

thermoviscoelasticity even when the viscoelastic moduli, thermal diffusivity etc. vary spatially
in directions perpendicular to the crack plane. In Section 3' we have applied these integrals to
certain crack problems in a thermoviscoelasticstrip. For certain boundary conditions it is
possible to determine explicit crack tip stress and displacement fields using such invariant
integrals and calculations made as XI tends to plus and minus infinity in the strip (see Fig. I).
Although the procedure outlined in Section 3 is inherently simple, in practice it can be
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algebraically complicated and moreover gives explicit results in terms of the Laplace transform,
so more work is required to determine real time results.

It is relatively easy, however, to extract results for small and large times from the full
Laplace transformed results by means of various Tauberian theorems. For example, the large
time behavior is related to the behavior of the transform as the transform parameter p tends to
zero. Thus in the results of Section 3.2, e.g. if we let p tend to zero we obtain results in
agreement with those of Section 4.1, Example 1, if f(p) and g(p) are chosen so that they tend to
infinity like lip as p tends to zero. Such a choice is consistent with the existence of the steady
state.

It should be noted that the procedure we have outlined can also be applied to other field
equations.

For example, the results of Section 2 may also be used to derive invariant integrals for the
non-simple elastic materials [l3]. The governing equations for the infinitesimal theory are[l3]

k . ..
- T·· - .s.u·· - m(T- aTkJc) = 0To JI 'I' /,/ ,

(5.1)

(5.2)

In (5.1) and (5.2), ,.\ and Jl are the Lame moduli, a is the temperature discrepancy, and T is the
deviation of the conductive temperature from a constant reference To. Also in (5.1) and (5.2),
we have taken the heat supply and body force to be zero. Laplace transforming eqns (5.1) and
(5.2) gives

k - --
- T·· -p.s.u·· - m(pT - apTkJc ) = 0To JI 'I' ',' ,

(5.3)

(5.4)

For a = 0, eqns (5.3) and (5.4) are simply the equations of coupled thermoelasticity and the
Lagrangian as given by (2.27) is

1- ei. - k -- m-
L = -"2 tiiij - 2 UiUi +4J TUi,i +2Top T,i T,i +T '[2

where

The corresponding "energy-momentum tensor" is found in eqn (2.29)

where

(5.5)

(5.6)

We note that eqns (2.28) and (2.30) may also be used to define an invariant integral. However, it
should be recognized that Plj in eqn (2.30) may not be zero along the crack faces. The condition
of zero stress along the crack faces requires U;2 be zero but not ~2'

For the full eqns (5.~) a~d (5.4), a Lagrangian may be sought by adding a term like t!>OT.qiii,J
to (5.5). Such a term wrll gIVe the correct field equation for displacement (5.4), but the Euler
equation for the temperature

(5.7)
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does not yield equation (5.3). However, equations (5.3) may be rearranged togive

(
k - -
To +pma)T.ii - P4>uu - mpT;;: O.

Substituting for T. tti in eqn (5.4) gives

/LUI.tt +(A + k 4>2 + /L)Uj,j1 - 4>(I - k I )t.i pp2Ui•
--+m --+1
paTo pmaTo

(5.8:

(5.9)

It is recognized that the displacement terms maybe derived from a pseudo-elastic strain energy
density function by defining a constant

A';;: A+ 4>2
k--+m

paTo

Thus eqn (5.9) can be written as

lIi).kk +(A '+ n)U··· - ".,T· ;;: flp2t7.t"" I. r- 1.1' '1 ,It', I

where

1/ ;;: 4>(1 - k I ) .
--+1
pmaTo

(5.10)

We see that eqns (5.8) and (5.9) are of the same form as the coupled equations for simple
thermoelastic materials and the Lagrangian is

L I t-' - pp2 -. + r-· + YJ ( k' T- 1"'; +m T-2);;: .2 Ijfij - T UjUI YJ Ui,1 ¢ 2Top .i ,I "2 ..

where

(5.11)

k' = k +pmaTo,

The "energy-momentum tensor" for eqn (5.11) is

P -, - k'1/ T- T-
/'=-u" u'/+-- . /I II I. pTo4> ,J •

where

-, -, ~ r,
U ij ;;: t jj - 1/0 ij •

(5,12)

Thus the results in Section 3 apply equally well to the non-simple thermoelastic materials with
appropriate definition of the material properties.
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